
N88-15926

2000 B CRYOGENICS PROGRAM OVERVIEW GODDARD SPACE FLIGHT CENTER

APRIL 28,1987

PRESENTED BY DR. STEPHEN H. CASTLES

OUTLINE

- o GSFC FLIGHT PROGRAMS
- O GSFC CRYOGENIC COOLER TECHNOLOGIES
- O LONG TERM STORAGE OF CRYOGENS
- O NEW LIGUID CRYOGEN COOLER TECHNOLOGY

LIQUID HELIUM SERVICING

22

LIST OF ACRONYMS

ADR Adiabatic Demagnetization Refrigerator

AF Air Force

ARC Ames Research Center

AXAF Advanced X-Ray Astrophysics Facility Ball Aerospace Systems Division BASD Broad band X-Ray Telescope **BBXRT**

Cryogenic Limb Array Etalon Spectrometer CLAES

COBE Cosmic Background Explorer

Diffuse Infrared Background Experiment DIRBE Earth Observing System (Polar Platform) EOS

EVA

Extra Vehicular Activity
Far Infrared Absolute Spectrometer **FIRAS Hubble Imaging Michelson Spectrometer** HIMS HIRIS High Resolution Infrared Spectrometer

H.Q. Headquarters (NASA) IRAC Infrared Array Camera

Infrared Astrophysics Satellite Johnson Space Flight Center IRAS JSC KSC Kennedy Space Flight Center

LMSC Lockheed Missiles and Space Corporation

MMC Martin Marietta Corporation

MODIS-N Moderate Resolution Imaging Scanner Nadir

MSFC Marshall Space Flight Center **NBS** National Bureau of Standards

NICMOS Near Infrared Camera and Multiple Object Spectrometer

PAMF Particle Astrophysics Magnet Facility (Astromag)

SAC Solid Argon Cooler SCC Solid Cryogen Cooler

Superfluid Helium On Orbit Transfer Flight Demonstration SHOOT

SIRGE Shuttle Infrared Glow Experiment SIRTF Space Infrared Telescope Facility SKIRT Spacecraft Kinetic Infrared Test

SS Space Station ST Space Telescope

Upper Atmosphere Research Satellite **UARS**

VMS Vacuum Maintenance System

XRS X-Ray Spectrometer

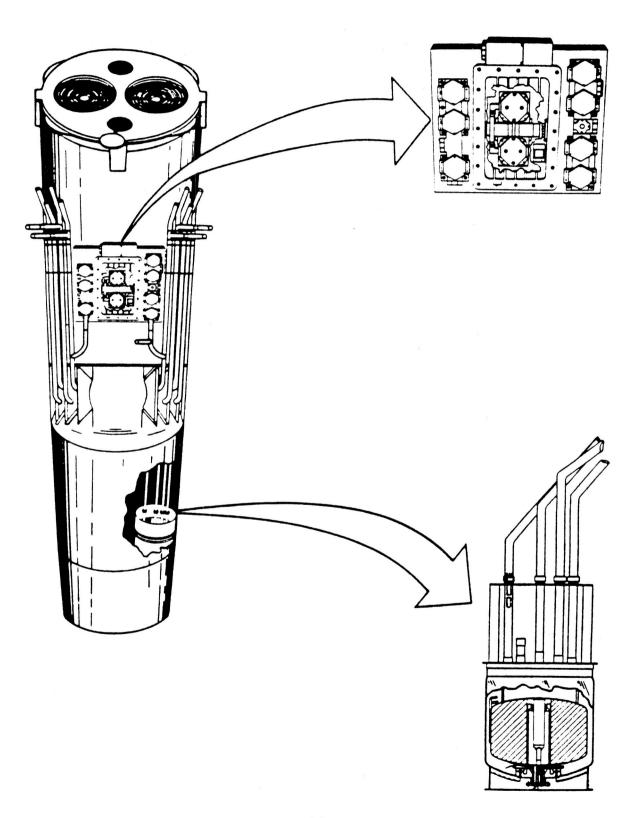
GODDARD'S ROLE

- o PROVIDE LEADERSHIP IN AEROSPACE CRYOGENIC COOLER TECHNOLOGY
 - DEVELOP ADVANCED COOLING SYSTEMS AND SUPPORTING TECHNOLOGY
 - ASSIST IN THE TRANSFER OF NEW TECHNOLOGY TO INDUSTRY
- o SUPPORT GODDARD PROJECTS REQUIRING CRYOGENIC COOLERS AND FLUID SYSTEMS
- o SUPPORT GODDARD PROJECTS REQUIRING THE DEVELOPMENT AND TESTING OF INSTRUMENTS AND SENSORS OPERATING AT CRYOGENIC TEMPERATURES

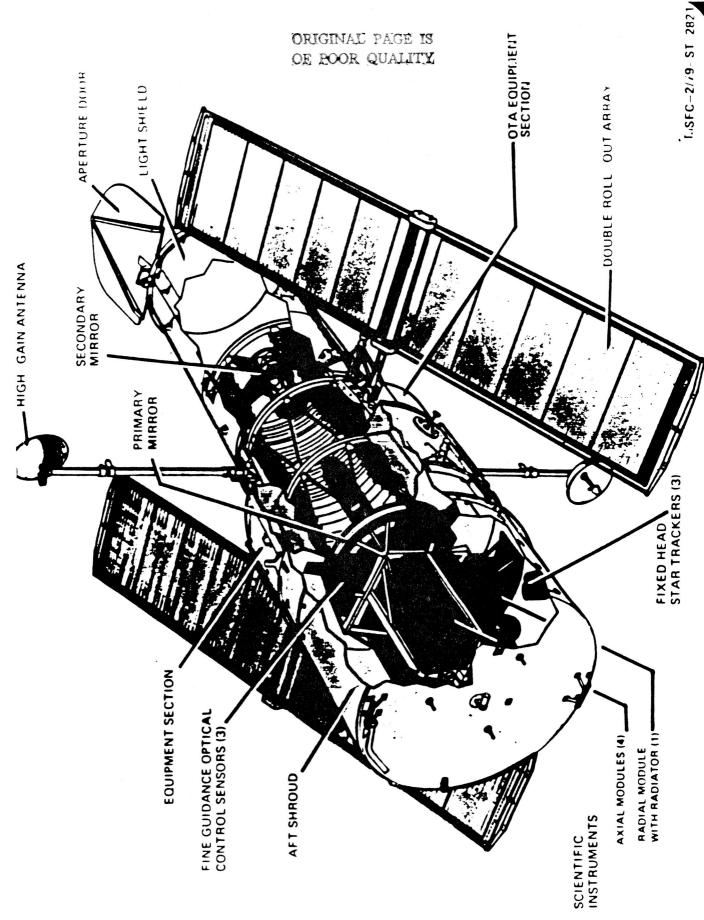
GSFC FLIGHT PROGRAMS REQUIRING CRYOGENICS

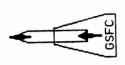
FLIGHT PROJECTS - ON GOING

- o COBE (FIRAS AND DIRBE)
- o UARS (CLAES)
- o BBXRT
- o LHe SERVICING FLIGHT DEMONSTRATION (SHOOT)


FLIGHT PROJECTS - START- UP PHASE

- o AXAF (XRS)
 - MECHANICAL COOLER
 - HELIUM DEWAR
 - ADR
- o EOS (MODIS AND HIRIS)
- o SECOND GENERATION SPACE TELESCOPE INSTRUMENTS (NICMOS, HIMS)
- o SKIRT


NEW STRUCTURE AND HAIR DAM ANTENNAS MEPACKAGED) EARTH BENBORS COBE/DELTA CONFIGURATION WFF CAME ANTERNA - DEPLOYABLE MAST DEWAR **NEW TDRSS OAMS-ANTENNA NEW DEPLOYABLE SOLAR PANELS** (9 PANELS, DOUBLE SIDED) NE/THENMAL SHIELD HEW DEFLOYALL


ORIGINAL PAGE IS OF POOR QUALITY

BBXRT SAC/VMS

SPACE TELESCOPE CONFIGURATION

GSFC FLIGHT PROGRAMS REQUIRING CRYOGENICS

(CONTINUED)

FLIGHT PROJECTS - LONG TERM

o ASTROMAG

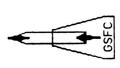
o SIRTF (IRAC)

O CRITICAL POINT EXPERIMENT

LIGUID HELIUM SERVICING

GSFC AEROSPACE COOLER TECHNOLOGY

10 - 120 K


- o SOLID CRYOGEN COOLERS: 10 120K (UARS, BBXRT)
- o SURFACE TENSION CONFINED LIQUID CRYOGEN COOLERS: 10-120K
- o SINGLE STAGE MECHANICAL COOLERS: 40 120K (AXAF, EOS)
- o MULTISTAGE MECHANICAL COOLERS: 2 40K

0.1 - 4K

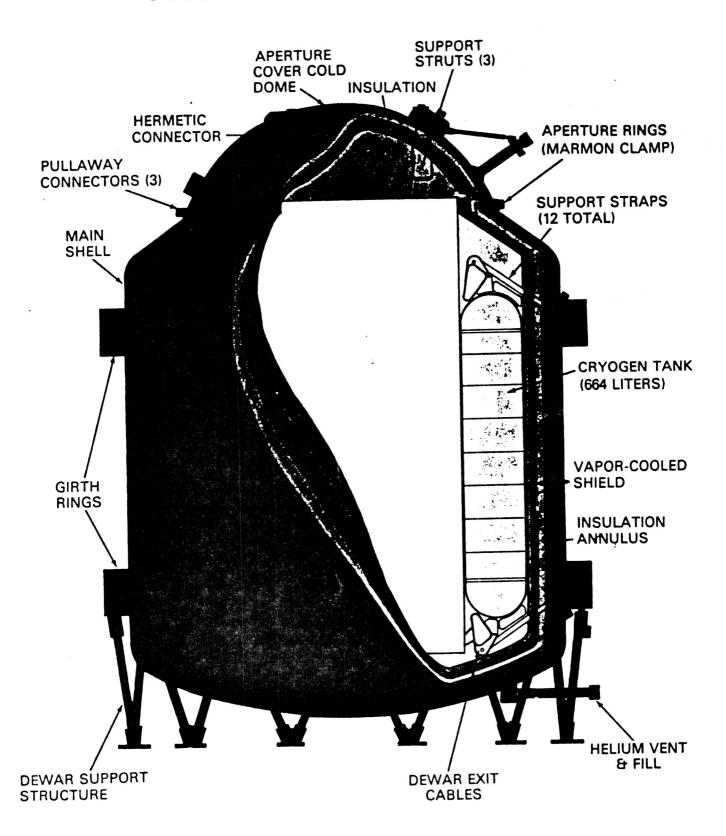
- o LONG LIFE LIQUID HELIUM DEWARS: 2K (COBE, AXAF, ASTROMAG)
- O ON-ORBIT LIQUID HELIUM TRANSFER (11 PAYLOADS, INCLUDING AXAF, SIRTF, ASTROMAG, LDR)
- o ADIABATIC DEMAGNETIZATION REFRIGERATORS: 0.1K (AXAF, SIRTF)

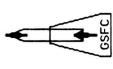
OTHER MAJOR GSFC CRYOGENIC SPECIALTIES

- o BOLOMETERS
- o TEMPERATURE SENSOR CALIBRATION
- O MATERIAL THERMAL PROPERTY MEASUREMENTS
- O SUPPORT FOR OTHER DISCIPLINES AT THE GSFC DESIGNING INSTRUMENTS OPERATING AT CRYOGENIC TEMPERATURES

GSFC FACILITIES

- CRYOGENICS LABORATORY
- CRYOGENIC COOLER DEVELOPMENT
- INSTRUMENT TESTING AT CRYOGENIC TEMPERATURE
- SENSOR DEVELOPMENT AND CALIBRATION
- LIGUID HELIUM SERVICING TEST BED
- REMOTE TEST SITE
- HAZARDOUS OPERATIONS AND TESTS


GSFC MECHANICAL COOLER PROGRAM

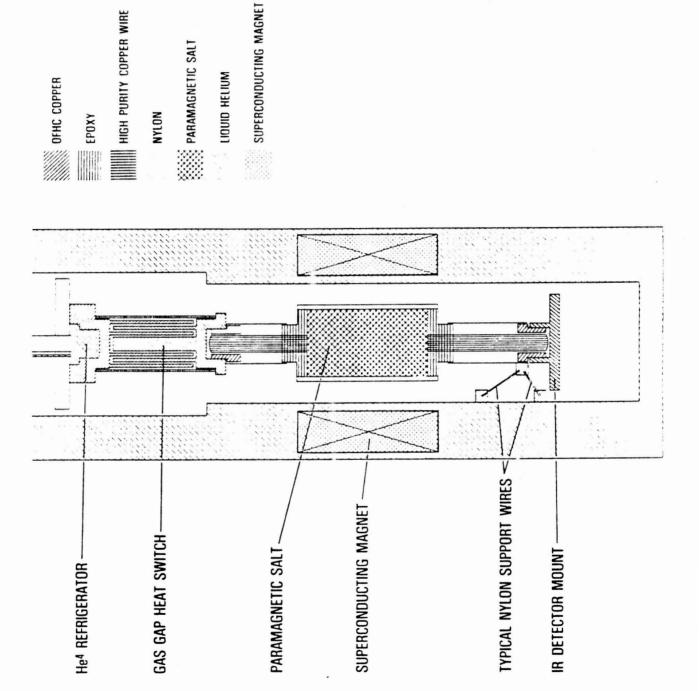

- o GODDARD IS DEVELOPING LONG LIFETIME SPACE FLIGHT QUALIFIED MECHANICAL COOLERS THROUGH CONTRACTS WITH INDUSTRY
 - PHILIPS LABORATORIES AND CREARE INC. ARE PRESENTLY UNDER CONTRACT
- o THE GSFC MECHANICAL COOLER PROGRAM WILL BE DISCUSSED IN A SEPARATE PRESENTATION

LONG LIFETIME SUPERFLUID HELIUM DEWARS

- O ONE LONG LIFETIME SUPERFLUID HELIUM DEWAR HAS FLOWN (IRAS)
 - THE IRAS DEWAR HAD A 10 MONTH LIFETIME
- o TWO SMALL DEWARS FLEW ON SPACELAB-2
- o THE COBE DEWAR HAS BEEN FABRICATED, TESTED AND DELIVERED TO THE GSFC
 - THE COBE DEWAR HAS A 14 MONTH LIFETIME
- o FUTURE MISSIONS SUCH AS AXAF, SIRTF, ASTROMAG, LDR, ETC., WILL HAVE MISSION LIFETIMES OF UP TO 15 YEARS

COBE DEWAR SYSTEM LAYOUT

<u>ADIABATIC DEMAGNETIZATION REFRIGERATOR</u>

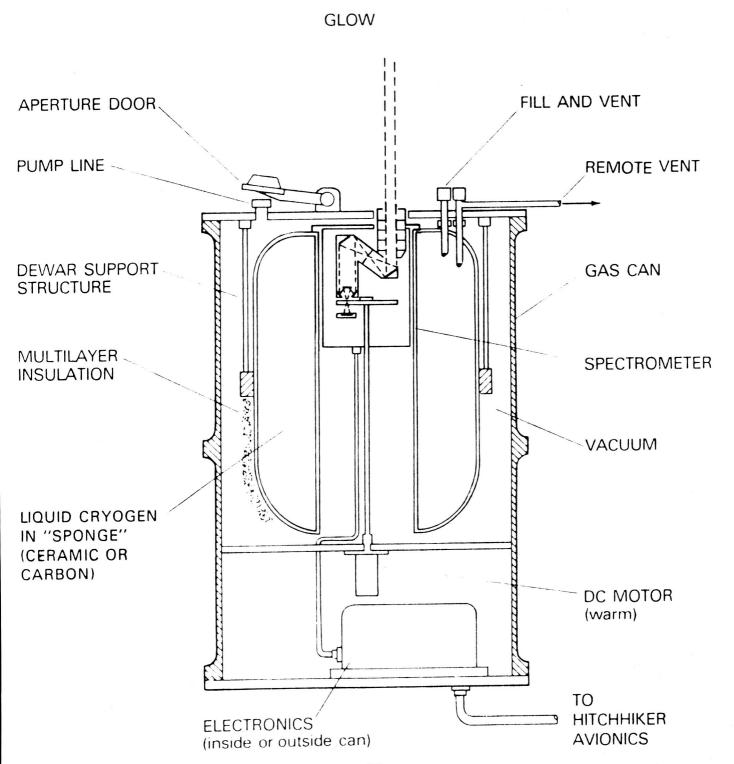

 A TECHNOLOGY DEMONSTRATION MODEL ADR HAS BEEN FABRICATED AND TESTED IN-HOUSE AT THE GSFC

O SEVERAL KEY TECHNOLOGIES WERE IDENTIFIED FOR FURTHER DEVELOPMENT

SHOULD BE COMPLETED IN 1987

AN ADR WILL BE REQUIRED BY INSTRUMENTS ON AXAF AND SIRTF

ORIGINAL PAGE IS OF POOR QUALITY


SOLID CRYOGEN COOLERS

- o SOLID CRYOGEN COOLERS REPRESENT THE OLDEST CRYOGENIC FLIGHT COOLER TECHNOLOGY
 - 4 NASA METHANE-AMMONIA COOLERS HAVE FLOWN
 - NO SOLID CRYOGEN COOLER HAS YET FLOWN ON THE SHUTTLE
- o GSFC IS MONITORING THE PRODUCTION OF SOLID CRYOGEN COOLERS FOR 2 PROJECTS
 - LOCKHEED IS PRODUCING A LARGE NEON/CARBON DIOXIDE COOLER FOR UARS (CLEAS)
 - BEECH (NOW BALL) IS PRODUCING A PAIR OF ARGON COOLERS FOR BBXKT

SURFACE TENSION CONFINED LIQUID CRYOGEN SYSTEM

- O GSFC IS DEVELOPING A NEW TYPE OF COOLER THAT MAY REPLACE SOLID CRYOGEN COOLERS
 - A SURFACE TENSION CONFINED LIQUID CRYOGEN COOLER
- o THIS TECHNOLOGY MAY BE APPLICABLE TO MOST 2 PHASE LIQUID CRYOGEN SYSTEMS
 - THE GOAL IS TO PROVIDE SIMPLIFIED ON ORBIT SERVICING

SURFACE TENSION CONTAINED LIQUID CRYOGEN COOLER FOR SHUTTLE GLOW EXPERIMENT

LIQUID CRYOGEN COOLER ADVANTAGES AND DISADVANTAGES

ADVANTAGES:

- POTENTIALLY REFILLABLE IN ORBIT
- NO GROUND HOLD TIME LIMITATIONS
- SIMPLE GROUND SERVICING OPERATIONS
- NO SLOSHING OF LIQUID ON-ORBIT

DISADVANTAGES:

- SPONGE USES UP TANK VOLUME
- SPONGE MAY BE A CONTAMINATION SOURCE
- UNTESTED THERMAL AND MECHANICAL BEHAVIOR

SPONGE PROPERTIES

			TEST
		GOAL	RESULTS
•	DENSITY	SMALL	7 LBS/FT ³
•	FREE VOLUME (VOLUME AVAILABLE TO CRYOGEN)	> 95%	90%
•	WICKING HEIGHT	HIGH	2 INCHES
•	STRENGTH, RIGIDITY	HIGH	FAIR
•	THERMODYNAMIC EFFECTS	NONE	NONE
•	THERMAL EXPANSION AND CONTRACTION	SMALL	SMALL
•	VIBRATION EFFECTS	NONE	TBD
•	PARTICULATE COUNT AND SIZES	FEW AND LARGE	TBD

POTENTIAL PAYLOADS

LONG DURATION MISSIONS:

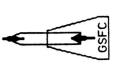
- SECOND GENERATION SPACE TELESCOPE EXPERIMENTS
- SPACE STATION (MAN TENDED EXPERIMENTS)

SHUTTLE SORTIE MISSIONS:

- SPACE KINETIC INFARED TEST
- NEAR INFRARED SPECTROMETER

LIQUID CRYOGEN COOLER PROGRAM

ACCOMPLISHMENTS:


- TESTS OF THE THERMODYNAMIC AND MECHANICAL BEHAVIOR OF CANDIDATE SPONGE MATERIALS (ONE CARBON, ONE CERAMIC)
- INDENTIFICATION OF OTHER AVAILABLE OR POTENTIAL SPONGE MATERIAL CANDIDATES

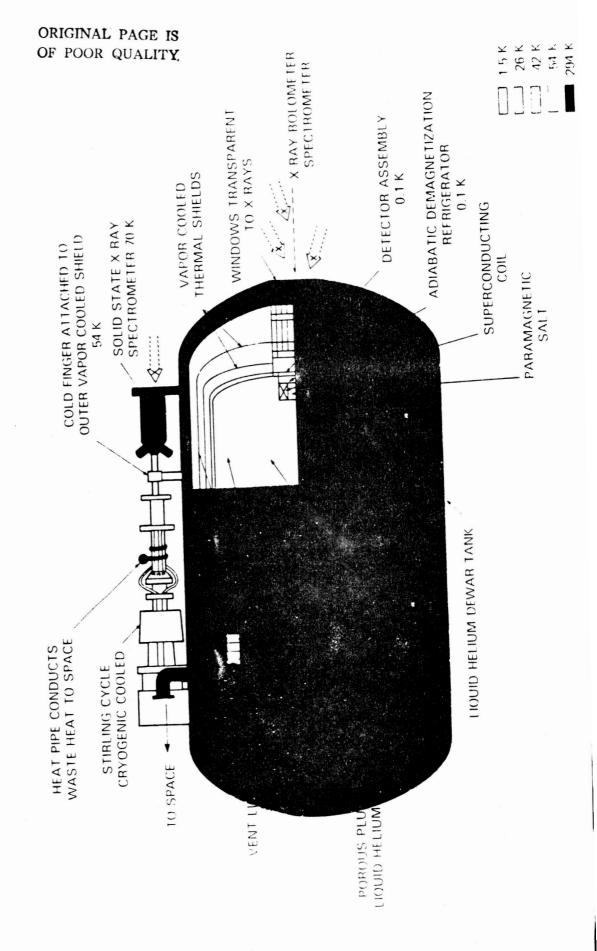
PRESENT WORK:

- AN SBIR CONTRACT HAS BEEN AWARDED TO INVESTIGATE CARBON SPONGE MATERIAL MICROSTRUCTURE
- DEVELOPING DESIGN TO ADDRESS CONCERNS INHERENT IN A SPACE QUALIFIED COOLER

LONG DURATION MISSIONS

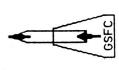
- o TECHNIQUES TO EXTEND THE LIFETIME OF MISSIONS REQUIRING CRYOGENIC COOLING INCLUDE:
 - o CHANGE OUT THE PAYLOAD STORED CRYOGEN COOLER ON-ORBIT
 - NOT FEASIBLE FOR MANY PAYLOADS BECAUSE OF POTENTIAL MISALIGNMENT OF THE INSTRUMENT
 - o RETURN THE PAYLOAD TO EARTH FOR SERVICING
 - NOT COST EFFECTIVE
 - o RELIQUIFY THE BOIL-OFF
 - NOT PRESENTLY BEING PURSUED BECAUSE OF LARGE POWER REQUIREMENT
 - o REPLACE THE CRYOGEN WITH ACTIVE COOLING
 - GODDARD IS DEVELOPING A MECHANICAL COOLER FOR THE 40K TO 120 K TEMPERATURE RANGE
 - MULTISTAGE MECHANICAL COOLERS USING PRESENT TECHNOLOGY REQUIRE SEVERAL KILOWATTS OF POWER TO PROVIDE COOLING AT LIQUID HELIUM TEMPERATURES
 - o REPLENISH THE CRYOGEN ON-ORBIT
 - DEVELOPMENT OF THIS OPTION HAS BEGUN FOR LIQUID HELIUM
 - o USE A MECHANICAL COOLER TO INTERCEPT A PORTION OF THE PARASITIC HEAT LOAD
 - BEING IMPLEMENTED FOR LONG LIFETIME LIQUID HELIUM DEWARS

LONG DURATION MISSIONS:

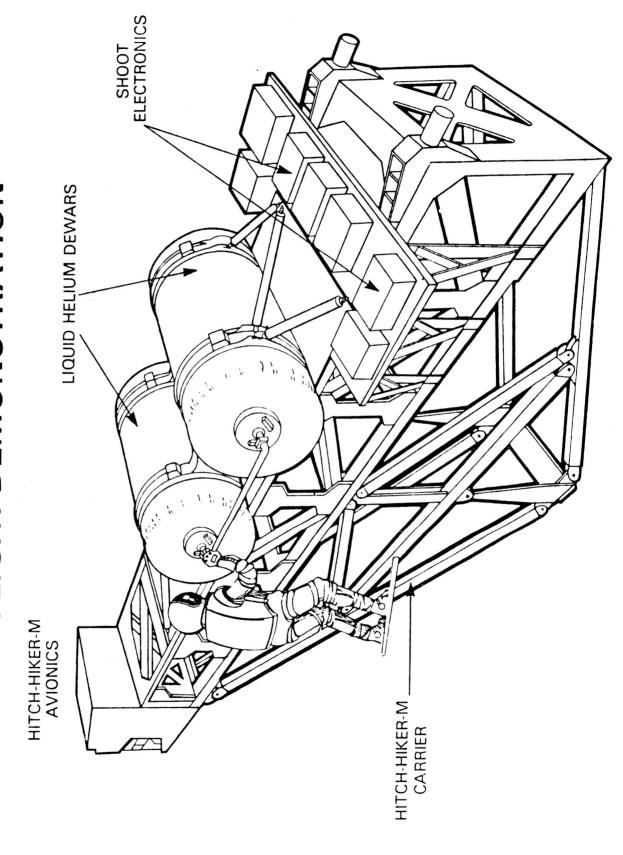

SUMMARY OF

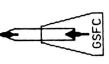
APPROACHES BEING PURSUED

0.1 - 2K


- O THE CAPABILITY TO REFILL PAYLOADS WITH LIGUID HELIUM IS BEING DEVELOPED
 - 11 MISSIONS HAVE REQUESTED SERVICING WITH LIQUID HELIUM
- O THE USE OF A MECHANICAL COOLER TO INTERCEPT THE PARASITIC HEAT LOAD HAS BEEN BASELINED FOR THE XRS INSTRUMENT
- MOST LONG LIFETIME PAYLOADS REQUIRING LIGUID HELIUM MAY USE BOTH APPROACHES 0

ADVANCED X-RAY ASTROPHYSICS FACILITY THE X-RAY SPECTROMETER ON THE


SUPERFLUID HELIUM ON ORBIT TRANSFER (SHOOT) FLIGHT DEMONSTRATION


- DEMONSTRATE THE TECHNOLOGY REQUIRED FOR LIGUID HELIUM SERVICING SPACE. THE SHOOT PROJECT IS FUNDED BY THE OFFICE OF SPACE FLIGHT SHOOT IS AN STS BASED FLIGHT DEMONSTRATION PROGRAM DESIGNED TO (CODE M) AT NASA HEADGULLERS. 0
- JOHNSON SPACE CENTER (JSC) AND THE MARSHALL SPACE FLIGHT CENTER SHOOT IS A JOINT EFFORT BETWEEN THE GODDARD SPACE FLIGHT CENTER (GSFC), AND THE AMES RESEARCH CENTER (ARC) WITH SUPPORT FROM THE (MSFC) AND THE KENNEDY SPACE CENTER (KSC).

0

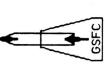
SUPERFLUID HELIUM ON ORBIT TRANSFER **FLIGHT DEMONSTRATION**

FLIGHT DEMONSTRATION PRIMARY REQUIREMENTS SUPERFLUID HELIUM ON ORBIT TRANSFER

DEMONSTRATE THE CRITICAL COMPONENTS AND OPERATIONS OF THE CRYO-SERVICING KIT. 0

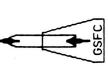
DEFINE THE REQUIREMENTS THAT MUST BE MET BY THE USER PAYLOADS TO ENSURE THAT THE PAYLOADS ARE SERVICEABLE. 0

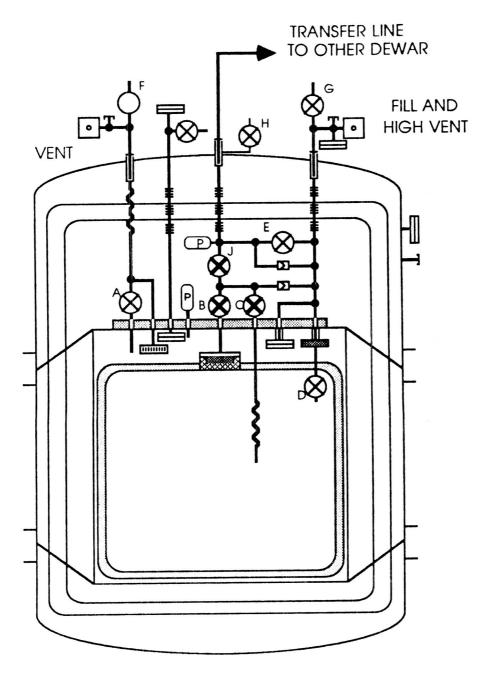
05 **>** D 04 \triangleright 03 D D 02 0 0 D > 00 66 **>** 0 **>** (AS OF 12/86) PH C/D 86 **>** 97 D 96 0/O 95 LHe SERVICING USERS SCHEDULE PH 0/0 94 PH C/D 93 PH PH C/D 92 91 **>** 90 83 ATTACHED 88 SHUTTLE 87 CY 86 CRYO SERVICING KIT LAMBDA POINT EXP. PRE PHASE A PHASE A STUDY PHASE B STUDY PHASE CO STS FLIGHT DEMO MATS. FACILITIES He SERVICING He SERVICING He SERVICING He SERVICING He SERVICING He SERVICING SHOOT DEVEL. ITEM ASTROMAG LAUNCH LAUNCH LAUNCH LAGNOH LAUNCH LAUNCH SIRTF AXAF

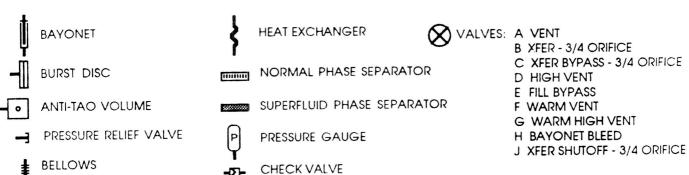

45

SUPERFLUID HELIUM ON ORBIT TRANSFER MISSION OBJECTIVES

- O DEMONSTRATE LIQUID HELIUM TRANSFER
 - DEMONSTRATE 500 L/HR TRANSFER RATE
- O DEMONSTRATE FLUID CONTAINMENT TECHNIQUES
 - CONTAIN SUPERFLUID HELIUM DURING HIGH RATE TRANSFER RATE
 - CONTAIN NORMAL LIQUID HELIUM DURING COOLDOWN OF THE RECEIVER DEWAR
- DEMONSTRATE FLUID ACQUISITION SYSTEM
 - PROVIDE FLOW TO THE PUMP AT 500 L/HR
- o DEMONSTRATE MASS GAUGING
 - HEAT PULSE
 - SUPERCONDUCTING WIRE WITH BENEFICAL SETTLING
- O DEMONSTRATE FLOW MEASUREMENT TECHNIQUES
- O DEMONSTRATE EVA TRANSFER LINE COUPLER
- o DEMONSTRATE REMOTE AND/OR AUTONOMOUS OPERATIONS

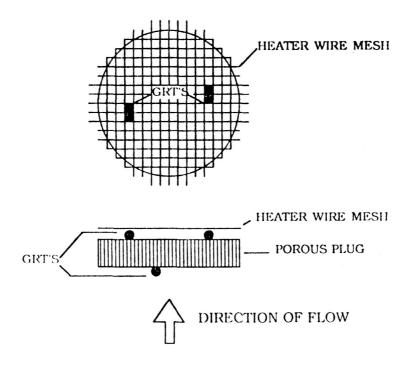

DEWARS


- o TWO 210 LITER CAPACITY DEWARS.
- APPROXIMATELY 100 MW PARASITIC HEAT LEAK ACHIEVABLE WITH VACUUM SHELL AT 300 K. 0
- o TWO VAPOR COOLED SHIELDS.
- FIBERGLASS STRAP SUPPORTED CRYOGEN TANK. 0
- MODULAR CONSTRUCTION FOR EASY ACCESS TO CRYOSTAT. 0
- PLUMBING, VALVES, PLUGS, ETC. CONTAINED IN REMOVABLE CRYOSTAT. 0



CRYOSTAT

- ALL PLUMBING, VALVES, PUMP, POROUS PLUGS, ETC. 0
- 1/2 INCH DIAMETER TRANSFER LINE AND FILL AND VENT LINES. 0
- 3/4 INCH DIAMETER HIGH FLOW RATE VENT LINE. 0
- o 5 CRYOGENIC VALVES AND 3 WARM VALVES.
- COLD AND WARM BURST DISCS.
- o EVA SFHe COUPLERS.
- OTHER COMPONENTS: PRESSURE TRANSDUCERS, GRTS. HEATERS, WIRING, 0



SHOOT DEWAR AND CRYOSTAT LAYOUT

THEROMECHANICAL EFFECT PUMP SCHEMATIC

THERMOMECHANICAL EFFECT PUMP TEST RESULTS

- LIMITED BY SIZE OF TEST BED VACUUM PUMP AND TM PUMP
 TEST BED HAS 1300 CFM PUMP
- 3 INCH DIAMETER TM PUMP PROVIDED 218 LITER PER HOUR FLOW RATE

NORMAL/SUPERFLUID PHASE SEPARATOR

(A THERMODYNAMIC VENT)

STATUS

- NARROW SLITS FABRICATED USING HIGH PURITY (99.999%) COPPER
 - PRESENT TESTS HAVE DEMONSTRATED 95% EFFICIENCY UNDER WORST CASE (HIGH PRESSURE AND LOW TEMPERATURE) CONDITIONS
 - IMPROVEMENTS EXPECTED TO BE ACHIEVED BY IMPROVED FABRICATION TECHNIQUES
- ALSO FABRICATING SOLID COPPER DISKS WITH SMALL PORES
 - 1 TO 1.5 MICRON PORES IN OFHC COPPER (ALABAMA CRYOGENIC ENGINEERING)

FUTURE WORK

WILL TEST BOTH PROTOTYPE IN LAB UNDER WORST CASE CONDITIONS

HIGH VENT RATE PHASE SEPARATOR

- POROUS PLUG WITH LARGE PORE SIZE PROVIDES LIQUID/VAPOR PHASE SEPARATION AT HIGH VENT RATES
 - REQUIRED DURING HIGH FLOW RATE TRANSFERS
- DURING NORMAL OPERATION AN IN-LINE VALVE CLOSES OFF THE HIGH VENT RATE PHASE SEPARATOR
- BASELINE IS STAINLESS STEEL PLUG WITH NOMINAL 8 MICRON PORE SIZE

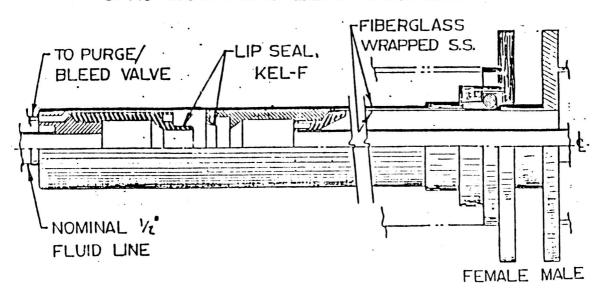
FLUID ACQUISITION SYSTEM

SPONGE

- CAPILLARY ACTION TESTED FOR SHUTTLE TILE MATERIAL (SILICA)
 - ABLE TO HOLD COLUMN OF HELIUM GREATER THAN 5 CM AGAINST 1 G

SCREENED CHANNEL (GALLERY)

- SMALL SCALE SAMPLE TESTED AT TM PUMP INLET
 - WOVEN STAINLESS STEEL WIRE (DUTCH TWILL WEAVE) WITH HOLE SIZE OF A FEW MICRONS
 - MAINTAINED FLOW TO PUMP INLET AGAINST 4 CM OF NEGATIVE HYDROSTATIC HEAD
 - FURTHER TESTS OF SCREEN SAMPLES WILL DETERMINE TEMPERATURE DROP AND TM CAPABILITIES (OPERATES AS A WEAK TM PUMP)


EVA ACTIVITY

- ASTRONAUT WILL DISCONNECT AND CONNECT AN EVA COUPLER IN THE TRANSFER LINE
 - ARC IS MANAGING THE EVA ACTIVITIES
- JSC IS PROVIDING THE EVA COUPLER
 - CRYOLAB HAS PRODUCED A THERMAL MODEL COUPLER FOR THE GSFC

LOW HEAT LEAK SFHe COUPLER

- DESIGNED FOR < 0.5 WATT HEAT LEAK
- TEST WITH SFHe DEMONSTRATED 0.25 WATT HEAT LEAK
- DESIGNED FOR > 100 PSID PRESSURE IN ANY DIRECTION
- DESIGNED FOR USE WITH HIGH THROUGHPUT, 1/2" NOMINAL TRANSFER LINE
- ABLE TO BLEED OFF TO SPACE ANY RESIDUAL He LEAK AROUND NOSE SEAL

SFHe LOW HEAT-LEAK COUPLING

MASS GAUGING

- HEAT CAPACITY TECHNIQUE
 - HIGH THERMAL CONDUCTIVITY OF SFHe ALLOWS SHORT RELAXATION TIMES (ABOUT 1 SEC)
 - CONCEPT TESTED IN SPACELAB 2 SFHe EXPERIMENT (BETTER THAN 10% ACCURACY)
 - RESOLUTION OF 1% REQUIRES HIGH PRECISION THERMOMETRY
- SUPERCONDUCTING LEVEL SENSORS
 - OPTIONAL MASS GAUGING WITH BENEFICIAL G SETTLING

FLOW METERS

- VENTURI TYPE METER BEING DEVELOPED BY NBS FOR ARC
- HEAT FLOW TECHNIQUE BEING INVESTIGATED BY THE GSFC
 - TEMPERATURE RISE BETWEEN TWO POINTS IN THE FLOW STREAM INDUCED BY KNOWN HEAT INPUT CAN BE CORRELATED TO FLOW VELOCITY

STEPPER MOTOR DRIVEN CRYOGENIC VALVE

- PROTOTYPE VALVE HAS BEEN DEVELOPED BY UTAH STATE UNIVERSITY UNDER CONTRACT TO GSFC. THE VALVE INCLUDES THE FOLLOWING: 1/2 INCH NOMINAL NUPRO BELLOWS VALVE (SS-8BK-TSW), REDUNDANT STEPPER MOTORS, REDUNDANT END POSITION INDICATORS, AND THE GEAR TRAIN.
- SPECIFICATIONS:
 - OPERATES UNDER VACUUM AND/OR FULLY IMMERSED IN LHe.
 - He LEAK THROUGH SEAT NOT TO EXCEED 1 X 10 -7 SCCS AT 4K
 - MAINTAIN ABOVE SPEC. AFTER FOLLOWING TESTS: LAUNCH VIBRATIONS, 25 THERMAL CYCLES (ROOM TEMP TO 4K), 200 OPEN/CLOSE CYCLES AT 4K, AND 300 OPEN/CLOSE CYCLES AT ROOM TEMPERATURE.
- TEST RESULTS TO DATE INDICATE VALVES WILL MEET SPEC.
- HIGHER FLOW CONDUCTANCE VALVES ARE BEING TESTED UNDER THE SAME CONTRACT.

SUMMARY

- GSFC HAS AN ACTIVE CRYOGENIC AND FLUID SYSTEMS TECHNOLOGY PROGRAM.
 - 16 CIVIL SERVANTS IN CRYOGENICS AND 9 IN FLUID SYSTEMS
- GODDARD CRYOGENIC COOLER TECHNOLOGY IS FOCUSED ON MEETING THE REQUIREMENTS OF NASA'S SCIENTIFIC INSTRUMENTS.
 - SOME TECHNOLOGIES MAY BE APPLICABLE TO OTHER CRYOGENIC FLUID SERVICING APPLICATIONS.
- ON ORBIT CRYOGENIC FLUID SERVICING IS AN INCREASINGLY IMPORTANT TECHNOLOGY TO MEET THE NEEDS OF LONG LIFETIME FACILITIES.

SPEAKER: STEPHEN H. CASTLES/GODDARD SPACE FLIGHT CENTER

John R. Schuster/General Dynamics Space Systems:

Can you briefly tell us what the status is of your magnetic stirling cyro cooler program?

Castles:

Yes, I am going to talk about that in detail tomorrow, so I don't want to get into too much depth. We have an engineering model that has now been running on the shelf for three years unattended. We are producing a flight model, and I'll give you a twenty-minute talk on it tomorrow.

Dave Chato/Lewis Research Center:

I was wondering what a bolometer was?

Castles:

A bolometer is a detector for the far infrared regions. On COBE we have them that go out to 1 cm. It is a calorimeter device. It absorbs the radiation, and, since it has low heat capacity itself, it warms up and you have a very sensitive temperature sensor. It is essentially a bulk measurement of the heat of the incoming radiation. It is the most sensitive far infrared detector. It turns out you can gain sensitivity, something like T to the -5/2 power, by going to the lower temperature. So there is a push to go to lower temperatures, as low as .1 Kelvin.

John Aydelott/Lewis Research Center:

You indicated that you identified 11 satellites that you felt could use servicing capabilities in the future. Are they all superfluid helium coolers?

Castles:

As far as we know, all of them would like to use superfluid. Let me elaborate on that. We have, as an adjunct to our SHOOT Flight Demonstration, a program which is actually funded by Space Station, to do a system level study of servicing for superfluid payloads or for liquid helium payloads. As part of that, we are looking at all the potential payloads, what their requirements are, and various aspects of servicing the particular payloads. We try to look at each particular payload to make sure that we can meet the specific needs. It does appear, based on that study, that superfluid will meet everyone's needs.

Aydelott:

Is superfluid helium really required from a scientific point of view, or is that perceived as a way to get around some of the low-gravity fluid management problems?

Castles:

What is required is the low temperatures. The sensors need low temperatures, and if you have a 4-Kelvin, normal helium dewar and you want to operate something at lower temperature, then you have to provide some means of

providing cooling at that lower temperature. Their are advantages, in terms of providing cooling power, to flying superfluid just because it is colder. Other than that there is no specific science driver for superfluid, as opposed to the normal helium.

John P. Gille/Martin Marietta Denver Aerospace:

With regard to the heat pulse gauging system, would you repeat what accuracy was achieved on Space Lab 2 and then tell me what you consider the potential for that method?

Castle:

On Space Lab 2, they did apply heat pulses and just looked at the temperature rise; a 10 percent accuracy was estimated, because their thermometer was not designed to be as precise as you would need for more accuracy. On SHOOT, the accuracy of the thermometry, or the sensitivity, is designed so that we can determine, under worst case conditions, the mass of the helium to 1 percent; we feel that is adequate.